Potentials of Vehicle Dynamics and Slip Control for Mobile Machinery enabled by an Electric 4WD

Mike Geißler, Pavel Osinenko, Jens Scholz
TU Dresden

4. Kolloquium:
Elektrische Antriebe in der Landtechnik

Wieselburg, 26. June 2013
Content

• Short overview on existing control systems

• Brief description of tire-ground dynamics

• Features of Rigitrac EWD120, simulation and experimental tests

• Results

• Summary
Tractor
- 3pt hitch draft control (EHR)
 Objective: - Pulling force, position and combined control
 - Slip-control in pulling force control mode
 - Vibration damping system for transport
- Adjustment of drive power (injection quantity)

Self propelled machines
- Pressure or volume flow control of the axle/wheel motors
Drive Train Concepts

- Fixed speed ratio of axles with leading
 - Mechanical tension in drive train
 - Disengagement of all-wheel-drive on streets and large steering angles
- Transfer of motor power to one wheel

- Adjustment of axle speeds
- Lower tire wear and stress in drive train
- Lockable differential for all-wheel drive

→ Fusion of the systems to combine the advantages

- Torque vectoring
- Reduction of mech. parts within the drive train
- Individual vehicle traction
- Optimized chassis concepts
- Oversizing (M↑) of the wheel motors
- Cost

26.06.2013
Potential of vehicle dynamics and slip control
Advantages of Electrical Drives

- High efficiency, especially in partial load range
- 4 – quadrant operation (motor / generator)
- Very good controllability, variable limit of the characteristic
- Space optimized structure
- Short-term overload capability of the motors
- Low-wear
Tire-Ground Contact and Power Transmission

a – driven wheel
b – driven wheel w/o long. force
c – pulling wheel

direction

Utilization of a Tractor

I highest energy efficiency
II max. draw bar power

→ Optimization of fuel cost and time

Control Approach

Steering, Different soil conditions, non-zero draft force angle (γ)
- Slip control by wheel torque adjustment
- Yaw control by torque vectoring

→ Verification in simulation model and on test stand

Diesel Electric Single-Wheel Drive

combustion engine
- 95 kW at 2000 1/min
- Liquid cooling

generator
- 90 kW at 2000 1/min
- Liquid cooling

DC Link
- 350 – 650 V
- Max. 700 V

brake resistor
- \(P_{\text{nenn}} = 40 \text{ kW} \)
- \(P_{\text{max}} = 200 \text{ kW} \)

suspension
- 4-wheel steering with hydro-pneumatic single wheel suspension

4 wheel drives
- Tire 540/60 R28
- \(v_{\text{max}} = 65 \text{ km/h} \)
- \(M_{\text{nenn}} = 8200 \text{ Nm} \)
- \(M_{\text{max}} = 14000 \text{ Nm} \)
- \(P_{\text{nenn}} = 33 \text{ kW} \)
- \(P_{\text{max}} = 44 \text{ kW} \)
- Liquid cooling
Simulation Model

input signals

vehicle body and wheels

contact dynamics

electric motors

Engine and Generator

output of result

identification, control, logic

26.06.2013 Potential of vehicle dynamics and slip control
Rigitrac in Test Environment

Objectives:
- handling of the system
- reproduce defined loads
- robust system controller (static and dynamic)
- efficiency of drive system

Measurements:
- diesel motor: n, M
 optional: fuel consumption
- DC Link: current and voltage
- 2 wheel motors: n, M
- component temperatures

- 2 x 90 kW asynchronous motors at front axle for load simulation
- additional gearboxes are available for high torques
Results – Torque Vectoring

- **Yaw rate during steering from 0° to 4° at 7 km/h**

![Graph showing yaw rate and time](graph.png)

- *_with control*
- *w/o control*

Legend:
- Blue line: Steering angle
- Green line: Yaw rate with control
- Red line: Yaw rate w/o control

Axes:
- Yaw rate [deg/s] on the y-axis
- Steering angle [deg] on the y-axis
- Time [s] on the x-axis
Results – Torque Vectoring with Yaw Control

yaw rate and torque difference during cornering at 10 km/h

slip of rear axle and steering angle change during cornering at 10 km/h

26.06.2013
Results – Slip Control at Constant Speed

- Torque [Nm]
- Slip [%] and controller status
- Speed [m/s]
- Motor speed [rpm]
Results – Slip with Yaw Rate Control

slip and drawbar force - 12 kN and \(\gamma = 20^\circ \) at 7 km/h - w/o control

slip and drawbar force - 12 kN and \(\gamma = 20^\circ \) at 7 km/h - with control

Yaw rate at different drawbar forces – 7 km/h
Summary

- Electric drives enables more accurate control strategies for mobile machinery
- Electric single wheel drives allows dynamic power distribution to handle any particular situation
- Torque vectoring improves motion stability and vehicle handling
- Single wheel slip control coupled with torque vectoring allows to optimally utilize drive train power
Thank you for your attention!

TU Dresden
Lehrstuhl Agrarsystemtechnik
01062 Dresden
e-mail: geissler@ast.mw.tu-dresden.de